Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709884

RESUMO

Vitamin B12 is an essential cofactor in all domains of life and B12-sensing riboswitches are some of the most widely distributed riboswitches. Mycobacterium tuberculosis, the causative agent of tuberculosis, harbours two B12-sensing riboswitches. One controls expression of metE, encoding a B12-independent methionine synthase, the other controls expression of ppe2 of uncertain function. Here, we analysed ligand sensing, secondary structure and gene expression control of the metE and ppe2 riboswitches. Our results provide the first evidence of B12 binding by these riboswitches and show that they exhibit different preferences for individual isoforms of B12, use distinct regulatory and structural elements and act as translational OFF switches. Based on our results, we propose that the ppe2 switch represents a new variant of Class IIb B12-sensing riboswitches. Moreover, we have identified short translated open reading frames (uORFs) upstream of metE and ppe2, which modulate the expression of their downstream genes. Translation of the metE uORF suppresses MetE expression, while translation of the ppe2 uORF is essential for PPE2 expression. Our findings reveal an unexpected regulatory interplay between B12-sensing riboswitches and the translational machinery, highlighting a new level of cis-regulatory complexity in M. tuberculosis. Attention to such mechanisms will be critical in designing next-level intervention strategies.

2.
Nat Commun ; 15(1): 1620, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388540

RESUMO

CRISPR arrays form the physical memory of CRISPR adaptive immune systems by incorporating foreign DNA as spacers that are often AT-rich and derived from viruses. As promoter elements such as the TATA-box are AT-rich, CRISPR arrays are prone to harbouring cryptic promoters. Sulfolobales harbour extremely long CRISPR arrays spanning several kilobases, a feature that is accompanied by the CRISPR-specific transcription factor Cbp1. Aberrant Cbp1 expression modulates CRISPR array transcription, but the molecular mechanisms underlying this regulation are unknown. Here, we characterise the genome-wide Cbp1 binding at nucleotide resolution and characterise the binding motifs on distinct CRISPR arrays, as well as on unexpected non-canonical binding sites associated with transposons. Cbp1 recruits Cren7 forming together 'chimeric' chromatin-like structures at CRISPR arrays. We dissect Cbp1 function in vitro and in vivo and show that the third helix-turn-helix domain is responsible for Cren7 recruitment, and that Cbp1-Cren7 chromatinization plays a dual role in the transcription of CRISPR arrays. It suppresses spurious transcription from cryptic promoters within CRISPR arrays but enhances CRISPR RNA transcription directed from their cognate promoters in their leader region. Our results show that Cbp1-Cren7 chromatinization drives the productive expression of long CRISPR arrays.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Ligação a DNA , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas de Ligação a DNA/metabolismo , Cromatina/genética , RNA , Regulação da Expressão Gênica
3.
Commun Biol ; 6(1): 968, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740023

RESUMO

In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.


Assuntos
DNA , Histonas , Histonas/genética , DNA/genética , Archaea/genética , Bioensaio , Eucariotos , Polímeros
4.
Elife ; 112022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35025730

RESUMO

Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse ß-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.


Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 'Gram-negative bacteria', which have an outer layer ­ called the cell envelope ­ that acts as a drug barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to stop these proteins from working. Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if it did, it might open up new ways to treat antibiotic resistant infections. To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which led to the antibiotic resistance proteins becoming unstable and breaking down because they could not fold correctly. Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic species of Gram-negative bacteria made these bacteria more sensitive to antibiotics that they would normally resist. To demonstrate that using this approach could work to stop infections by these bacteria, Furniss, Kaderabkova et al. used Gram-negative bacteria that produced antibiotic resistance proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibiotics, which increased their survival rate, indicating that blocking DsbA may be a good approach to tackling antibiotic resistant bacteria. According to the World Health Organization, developing new treatments against Gram-negative bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way around this is to develop ways to make existing drugs work better. Making drugs that block DsbA could offer a way to treat resistant infections using existing antibiotics in the future.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Mariposas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Adjuvantes Farmacêuticos , Animais , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Genes Bacterianos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Dobramento de Proteína , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
Microbiol Spectr ; 9(2): e0109521, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34549992

RESUMO

Almost 140 years after the identification of Mycobacterium tuberculosis as the etiological agent of tuberculosis, important aspects of its biology remain poorly described. Little is known about the role of posttranscriptional control of gene expression and RNA biology, including the role of most of the small RNAs (sRNAs) identified to date. We have carried out a detailed investigation of the M. tuberculosis sRNA F6 and shown it to be dependent on SigF for expression and significantly induced in starvation conditions in vitro and in a mouse model of infection. Further exploration of F6 using an in vitro starvation model of infection indicates that F6 affects the expression of the essential chaperonins GroEL2 and GroES. Our results point toward a role for F6 during periods of low metabolic activity typically associated with long-term survival of M. tuberculosis in human granulomas. IMPORTANCE Control of gene expression via small regulatory RNAs (sRNAs) is poorly understood in one of the most successful pathogens, Mycobacterium tuberculosis. Here, we present an in-depth characterization of the sRNA F6, including its expression in different infection models and the differential gene expression observed upon deletion of the sRNA. Our results demonstrate that deletion of F6 leads to dysregulation of the two essential chaperonins GroEL2 and GroES and, moreover, indicate a role for F6 in the long-term survival and persistence of M. tuberculosis in the human host.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Chaperonina 60/biossíntese , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Choque Térmico/biossíntese , Mycobacterium tuberculosis/metabolismo , Pequeno RNA não Traduzido/genética , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/genética , RNA Bacteriano/genética , Fator sigma/genética , Inanição/patologia , Tuberculose/patologia
6.
Proc Natl Acad Sci U S A ; 115(23): E5353-E5362, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29789383

RESUMO

T7 development in Escherichia coli requires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ70, by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.7 remains to be fully deciphered. Here, we present results from functional and structural analyses to reveal that Gp5.7 primarily serves to inhibit EσS, the predominant form of the RNAP in the stationary phase of growth, which accumulates in exponentially growing E. coli as a consequence of the buildup of guanosine pentaphosphate [(p)ppGpp] during T7 development. We further demonstrate a requirement of Gp5.7 for T7 development in E. coli cells in the stationary phase of growth. Our finding represents a paradigm for how some lytic phages have evolved distinct mechanisms to inhibit the bacterial transcription machinery to facilitate phage development in bacteria in the exponential and stationary phases of growth.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófago T7/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Escherichia coli/virologia , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Bacteriófago T7/enzimologia , Bacteriófago T7/genética , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas , Conformação Proteica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA